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A semiclassical S-matrix theory is developed and applied to spectral line broadening in linear molecules 
perturbed by atoms. This theory uses curved classical trajectories determined by the isotropic part of the 
atom-molecule interaction and the S-matrix is treated to all orders in the interaction. Numerical 
calculations can be made rather easily even for high quantum numbers. The theory is least accurate for 
very low quantum numbers, but even then calculations agree to within 10% with close coupling results 
where comparisons could be made. Comparisons were also made with other theoretical approaches using 
model potentials and with experiment using a b  initio potential surfaces. 

I. INTRODUCTION 

The width and shift of spectral lines a r e  often used as 
a probe for measuring the pressure  and temperature of 
gases as well as for  various relaxation and energy trans- 
fer processes.  In recent years,  the most commonly 

used theory for neutral gases (where charged particle 
densities are negligible) is the impact theory developed 
by Anderson' and extended by Baranger. 
the radiation is perturbed by a random sequency of non- 
overlapping binary collisions. The half-width at half - 
maximum (HWHM) of an isolated vibration-rotation line 
is then given by3 

In this theory, 

where n is the density of perturbing particles, I (  is the 
relative velocity of radiator and perturber,  f ( u )  is a 
Maxwellian velocity distribution, and S(u, b )  is the clas- 
sical path S-matrix for a binary collision with impact 
parameter b and velocity I ( .  In this expression, the 
translational motion of all particles is treated classical- 
ly; that is, the particles a r e  assumed to follow classical 
trajectories determined by some interaction potential, 
The internal states of the particles (e. g., vibration, 
rotation, e tc . )  are treated quantum mechanically and in 
Eq. (1.1) are described by the quantum numbers (v, j ,  
m ) .  One could also include internal perturber states 
in Eq. (1. l), but in this paper we are only interested 
in perturbers which remain in their ground state (i. e . ,  
noble gas atoms); thus, for simplicity, we have not 
specified any perturber quantum numbers. The deriva- 
tion of Eq. (1.1) and i t s  conditions for  validity have 
been discussed at  length in the l i terature (e. g., s ee  
Ref. 3) and will not be discussed here. 

In this paper we will discuss a new method of calcu- 
lating the classical  path S- matrix for rotation-vibration 
transitions and contrast our approach with the common- 
ly used perturbation approach known as "Anderson the- 
ory, " the "semiclassical" theory of Neilsen and Gor- 

I 

don, the inelastic approximation of Murphy and Boggs, 
as well as completely classical  and completely quantum 
mechanical (i. e. , close coupling) calculations. For a 
review of these and other theoretical approaches, see  
Rabitz. 

In the Anderson theory, the S-matrix is approximated 
by a second order expansion in the interaction potential 
and the classical trajectories a r e  taken to be straight 
lines. This method requires some type of impact pa- 
rameter cutoff, otherwise the colliding particles would 
pass  through one another for small  impact parameters,  
and the approximate S-matrix would diverge. This 
physically unrealistic situation is avoided by replacing 
the integral over small  impact parameters by a hard 
sphere collision c ros s  section, iibi, o r  something simi- 
lar. 
cutoff procedures, and by trying one after another, it is 
eventually possible to make a calculation agree with a 
given experiment (e. g., see  Rabitz3 o r  Bouanich and 
Haeusler'). Unfortunately, the calculations are very 
sensitive to the cutoff procedure and there is no single 
procedure which will describe a large number of differ- 
ent experiments. Thus, it  is quite clear that with this 
method of calculation, the physically unrealistic impact 

In the literature, one finds a countless variety of 
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parameter cutoff is obscuring all  the information about 
collision dynamics and interaction potentials which one 
hopes to obtain from line broadening. 

Our method of calculating the classical  path S-matrix 
employs curved trajectories.  These trajectories a r e  
determined by the spherically symmetric part  Vo of the 
interaction potential. The S-matrix is then calculated 
to all o rde r s  in the interaction potential (thus preserv- 
ing i t s  unitarity). With such realist ic classical  trajec- 
tor ies  there  a r e  no unphysical divergences resulting 
from two particles passing through one another. Fur- 
ther, when the interaction potential becomes very large, 
the second order expansion used in the Anderson theory 
breaks down, whereas our calculation to all  o rde r s  in 
the interaction remains valid. Thus it is not necessary 
to introduce an impact parameter cutoff in our method. 
Our approach is quite similar to that used by Neilsen 
and Gordon4 except that they used a numerical solution 
of the time dependent Schrodinger equation to obtain the 
S-matrix, whereas we use a numerical approximation 
involving the rotational quantum number j to obtain an 
analytic solution. Our approach is therefore much sim- 
pler  and permits calculations for large values of j .  

To illustrate our approach and the accuracy attainable 
using it and to permit a detailed comparison with other 
theoretical methods, we  have performed calculations 
for  several  rotation l ines in HC1, CO, and CO, per- 
turbed by He and Ar.  

J 

II. THE CLASSICAL PATH S-MATRIX 

Our method of calculation is based on an expression 
for the S-matrix which employs classical  trajectories 
for  the relative motion of the colliding particles.  Such 
expressions have been derived by Cross7 and by Smith 
et al. 
teraction is written in the form 

In these derivations, the radiator-perturber in- 

v=  v,+ v' , (2 .1)  

where Vo represents the spherically symmetric part  of 
the interaction (which is diagonal in vibration-rotation 
states), and v' denotes the res t  of the interaction. 
Translational scattering states @n a r e  obtained by solv- 
ing the Schrodinger equation for  V,  only, Classical  path 
resul ts  then follow when one evaluates matrix elements 
of v' by the method of stationary phase; for  example, 

/ d r  &(r, t )  V'(r) &.(r, t )  = 6,,,, V'(rn(t)) (2 .2)  

where p and p' denote the relative momentawhen the par- 
t icles are infinitely far apart  and r#) denotes the classi- 
cal trajectory for  motion in Vo. Following the deriva- 
tion given in Secs. 2 and 3 of Ref. 8, one obtains the 
following expression: 

(p ujni 1 S 1 p' uj'm')  = (p I So 1 p') (ujnz I S'(r,,) 1 uj 'm ') , 
with the S' matrix elements given by the t ime ordered 
series 

(2. 3) 

For convenience, all  fi factors have been absorbed in V 
[see Eqs. (2 .7)-(2.  ll)]. The matrix So is comparable 
to the t e rm exp ( 2 , ~ ~ )  obtained by Cross.7 In quantum 
mechanical expressions for  the half-width (e.g. ,  Sec. 
3B of Ref. 8), one always has the matrix product SS*.  
Thus, when Eq. (2 .3)  is used for S, the factors So 

exp (2 ,q0) ,  which describe purely translational effects, 
cancel out [since the same trajectory is used for  both 
upper and lower states; see Eq. (3 .15)  of Ref. 81. The 
matrix S' descr ibes  transitions between the rotational 
states induced by the collision; transitions between dif- 
ferent vibrational levels have been ignored since they 
are much weaker than the rotational transitions [owing 
to the exp(Zw,.,t) factors which would appear in Eq. 
( 2 . 4 1 .  The $-matrix is comparable to the factor 
exp(2ivo) obtained by Cross ,  except that our result  is a 
time ordered exponential. Finally, to obtain the expres- 
sion given in Eq. (1.1) it is necessary to perform an 
angular average over the relative directions of p and p'. 
This angular average reduces the matrix product 
5"(rD) S'(rP.)* to S ( M ,  b )  S * ( u ,  b )  multiplied by two 3j sym- 
bols summed over azimuthal quantum numbers wz [see 
Eq. (1.1)]. Note that this angular average (or sum over 
m states) leaves the final expression invariant to further 
rotations of the coordinate frame. The matrix elements 
of S ( t c ,  b )  are thus given by a time ordered series equiv- 

I 
alent to that in Eq. (2 .4) .  F o r  simplicity, these matrix 
elements a r e  written in the form 

(u jm (S(u,  b )  I uj 'm')  = (v jm 10 e-'" I vj'm') , (2 .5)  

(u jm 17' I vj'm') 

= 1:dte'"ff  (ujnz  I V ' { Y ( ~ ) ,  @}Iuj 'm')  , (2.6) 

where o is the time ordering operator and the coordi- 
nates { ~ ( t ) ,  e(t), @}, which a r e  functions of the impact 
parameter b and velocity u ,  describe the classical t ra-  
jectory in the center of mass  f rame.  

For  the atom-linear molecule collisions considered 
in this paper, we take 

V0(Y) =F 4E [(;I2 d - ($7 , 
(2 .7)  

(2 .8)  
where e is the angle between the radiator-perturber in- 
ternuclear axis and the molecular axis; (e', @') denote 
the orientation of the molecule relative to a space fixed 
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(2 .10)  

4E v,04 =: [K , (d l  v)'2 - A I (d: VI6 1 I ?  3 . ( 2 . 1 1 )  

We have chosen a (d!r)" repulsive potential ra ther  than 
an eliponential form only for  convenience. For thermal 
energy scattering, most exponential potentials can be 
adequately approximated by ( d / ~ ) ' ,  and the trajectory 
calculations a r e  slightly simpler with the latter. The 
Y - ~  attraction in L',(Y) is chosen to conform with conven- 
tional usage [for example, Eq. (4) of Neilsen and Gor- 
don 1' which is based on the known functional dependence 
at large Y. However, i t  should be noted that all V , ( r )  
can be  adequately represented by the 6-12 form since 
atom-molecule line broadening calculations a r e  rela- 
tively insensitive to the exact Y -  asymptote. In fact, 
the Y -  ~0 asymptotes of potentials obtained from line 
broadening o r  molecular beam and transport data often 
differ with calculated polarizabilities by a factor of 2 
o r  so (for example, Pack, Ref. 9). 

Equation (2 .8)  is adequate only for  pure rotation tran- 
sitions. For  vibration- rotation lines, the polarizabil- 
i t ies  of the initial and final s ta tes  may be somewhat dif- 
ferent owing to the change in the vibrational quantum 
number. The repulsive par t  of the interaction may also 
be affected owing to the fact that vibrational excitation 
tends to increase the s ize  of the molecule. In order to 
take these effects into account, one may wish to add an 
isotropic t e rm to Eq. (2.8). 

(2 .12)  

where c r  and d a r e  functions of the vibrational quantum 
number; A,, A, ,  h,, IC,, etc . ,  may have a slight depen- 
dence on vibration quantum number (see Giraud e l  ol . ,  
Ref. 1 0 ) .  

I l l .  THE PEAKING APPROXIMATION 

by Eqs. ( 2 . 6 )  and (2 .8)  as 
We next consider the phase integral q' which is given 

C?'WJj' t  Y : * ( 8 ( / ) ,  (1)) V , ( Y ( t ) ) t f /  , (3 .  1) 

where for  simplicity we have suppressed the vibrational 
quantum number. 

The t ime t = 0 is chosen to be the t ime of closest ap- 
proach [i. e . ,  the t ime when v( t )  is smallest]. Both of 
the radial functions )*-I2 and Y - ~  are sharply peaked at  
t = 0, and the "resonance factor" exp(iw,,,i) can only 
fur ther  enhance this peaking. We therefore make the 
"peaking approximation" by expanding the angular t e rms  
Y L ( @ ( l ) ,  0) about t = D  and retaining only the "zeroth 
order" term. That is, we replace Y: (e ( t ) ,  $I) by Y:(8,, 
6) where 8, is the angle at the time of closest approach: 

x [ - p i ~ J J , t  V , ( r ( l ) )  df . ( 3 . 2 )  
--e 

This  peaking approximation has  been discussed in detail 
by Roberts (Ref. 1 1 ) .  

Since Eq. ( 1 . 1 )  is rotationally invariant, we may ro- 
tate through the Euler angles (- o, - e,, 0) for  a given 
h and v .  That is. we rotate to a coordinate f rame where 
the phase shift matrix becomes 

! ' , (?.( / ) )d!  , ( 3 .  3 )  

where we have used Y i ( 0 , O )  = Fi,,J(2lfl)/4;7 and the 
fact  that the U: operator is diagonal in m. 12*13 

IV. EVALUATION OF THE CLASSICAL PATH 
S-MATR IX  

In order  to evaluate the S-matrix elements, we f i r s t  
evaluate the matrix elements of Yi required by Eq. 

From Edmonds" (pp. 59 and 122) ,  we obtain an 

( 3 . 3 ) .  

approximate elcpression for  the 3j symbols so the matrix 
elements of Yh may be given by 

where -lj = j  - j '  and F;" a r e  associated Legendre poly- 
nomials. 
but we have used cos0 = w / ( j  +$I since it is just as ac-  
curate and more convenient in our computer program. 
In the Appendix we show that the e r r o r  introduced by 
the approximation in Eq. (4.1)  is at most the order of 
(AI /:j 1'. 

may be approximated by 

According to Edmonds, cos0 = m / d m J ,  

The frequency factor w j j .  which appears in Eq. (2 .4)  

I 1  
hij j .  = 2 7 c r ; [ j ( j - + I ) - j  ( j  + I ) ]  

= 2 z c ~ ( j + j ' + l ) ~ j  

=21rcB(2j + l ) A j [ l  + A j / ( 2 j  + I ) ]  

= s l j  , ( 4 . 2 )  

where B is the rotational constant. It will be assumed 
that d defined by 2ircB(2J + 1 )  is essentially constant, 
that is, the Aj changes i n j  are small compared with j 
itself. This approximation was tested by using the next 
higher order  approximation to w,,.[i. e . ,  t e rms  of order  
( A j d ) ' ]  which had l e s s  than a 1% effect on our calcula- 
tions (see also the discussion in the Appendix). 

We next define a function F j - j , ( t )  by 
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Notice that F A ,  also depends on j through the argument 
of the Legendre polynomial; this will be discussed fur- 
ther following Eq. (4 .13) .  Using Eq. (4.31, Eq. (3. l) 
becomes 

I 

( j m  I ,  I j 'm)  = 

( j n i  1,Ij'wz) = ~ ~ ~ t , ~ , - ~ ~ ( t , ) e x p j i o ( j - ~ ~ ) t , l  

dtF,_,,(t) exp{iw(j  - j ' ) t )  , 1" 
12 J 3 '  .* J ,  

t l  
* 1- dt2 FJ2-J3('2) i i W ( j  - iz ) t l}  ' 

We next multiply the right side of Eq. (4 .6 )  by 

1 =E tjJ, ), =-L c Jrr e i S ( J - 1 1 )  ds 
J1  2n J 1  

l: ( j n ?  1 r, I 13 . I  m> = 6,,, E',,(/) exp(ihAj)  dt . (4 .4 )  

The S-matrix in Eq. (2 .5)  may now be written in the fo rm 
0 

( j m  IS(u, b )  Ij'p?') = 6,,, (- i ) " ( j t a  / I n  Ij'w?) , (4 .5)  
n=O 

where I,, = 1, and 

so that we can replace j by j ,  in Eq. (4 .6 ) .  Then changing summation variables f rom ( j , ,  . . . , j n )  to (61, . . . , 
where 

j n = j ' + 6 ,  , 
j n - ,  =j'  + 6, + 6,-, , 

(4 .8)  

j ,  = j ' + 6 n + 6 n - 1 + . - .  +6, , 
Eq. (4 .6)  finally becomes 

Note that while j , ,  . . . , j ,  were summed over the range 0 to m, the variables 6,, . . . , 6, a r e  summed over the range 
- m  to +". 

Using the identity 

or ,  in  general, 

Equation (4 .9)  becomes 

(4 .10)  

(4.11) 

(4 .12)  

(4.13) 

I 

(6,, . . , , 6,) and assumed that Fa, depends only on 6,. 
In reality, F depends on j ,  as well as ( j ,  - j r - , )  [see Eq. 
(4.311; by ignoring the former  we are asst"g that the 
incremental changes in j are small  compared with j it- 

In deriving this result, we have again assumed that 
the increments 6, = ( j ,  - j , - , )  in the j quantum numbers 
are small  compared with the j ,  themselves. This  was 
done when we replaced the sum over ( j , ,  , . . , j , )  by 
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self. This is rigorously correct  for  the A j  = O  terms,  
and in the Appendix it is shown that the A j  +O t e rms  in- 
troduce an e r r o r  the order  of (Aj/ j )z  o r  smaller .  Equa- 
tion (4.13) has also been obtained by Percival and 
Richards‘* by assuming that the quantum number is 
much larger  than i t s  incremental change. While this 
condition is also regarded as the “classical limit, ” we 
recall that we have not treated the azimuthal quantum 
number n? in this manner because we were able to diag- 
onalize the phase shift matrix q’ in rn .  This is desir- 
able since I nt I ranges from 0 to j and thereby includes 
some distinctly nonclassical values. 

To proceed further, we  note that ~ ( t )  and F,( t )  a re  
even functions of t .  This  property reduces the t inte- 
gral  in Eq. (4.13) to a cosine transform. We therefore 
define a set  of functions K6(w) by 

andfor  6 > 0  
I 

V. THE LINEWIDTH 

As mentioned in Sec. 11, one may wish to add an iso- 
tropic term Viv ib’  to the interaction i n  order  to account 
for  the effect of vibrational excitation [see Eq. (2.12)].  
This correction simply adds the factor 

= l- V y ” ( V ( t ) ) d t  (4.17) 

to the KO t e rm already defined in Eq. (4.14).  

The expression fo r  the linewidth, Eq. (1. l), is simplified by the fact that the S-matrix is diagonal in tv: 

w,. j , , ~ j = 2 ~ ~ z ~ ~ i ~ ( z t ) d z t ~ w b d b u ~ j , u , j , ( z ~ ,  b )  

This equation also defines the unaveraged optical c ros s  section cr(zt, b )  which will be useful in comparing theoretical 
resul ts  . 

Another interesting expression for the linewidth can be obtained by using the identities 

Re(zVnz 1 S I  u j n ~ )  (u>’ iu ’  1 S /  LI’j’vn’)* 

= + {  j ( u j w  1 S /  u j w )  12 + I (u’j ’ni’  IS /  ti’j’nz’) 1 - 1 ( u j m  1 S /  ujnr) - (u ’ j ’ tu ’  I S I  u‘j‘nz’) 12) ( 5 . 2 )  

and 

Substituting these identities into Eq. (5.11, we obtain 

(5 .4)  

Equation (5 .4)  is interesting because it expresses  the 
linewidth in terms of a purely inelastic contribution 
plus a coherence te rm which involves the difference of 
scattering amplitudes. The la t ter  term,  which is often 
neglected (for example, Murphy and Boggs), contains 
the effect of elastic collisions which interrupt the phase 
of the radiator without quenching it. The elastic con- 
tribution can be quite important, especially in  cases  
such as HC1-Xe where the vibrational broadening re- 
sulting from h-?lb) is strong (e. g., Ref. 10). One must 
therefore exercise considerable care  when using mea- 

sured half-widths to infer inelastic c ros s  sections. 

VI. LINEWIDTH CALCULATIONS 
A. General 

based on model potentials which include anisotropy 
t e rms  [see Eq. (2 .8) ]  up to order  P,(cose). In such 
cases, w e  need only consider 

Most of the calculations presented in this paper are 
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The S-matrix may then be evaluated by  using the iden- 
tity (Ref. 15, p. 361) 

e x p ( - i ~ c o s s ) = J , ( K ) + 2  C ( - i ) ' ~ , ( ~ ) c o s ( l s )  (6 .4)  

[where J , ( K )  a r e  Bessel functions of integer order  i] and 

., 

1 3 1  

The sum over Bessel functions in Eq. (6 .6)  converges 
very rapidly and it is usually necessary to include only 
three o r  four te rms .  

The recent theoretical potential surfaces  which a r e  
based on the Gordon-Kim electron gas model', include 
important contributions from anisotropy t e r m s  as high 
as PS(cose)  and P6(c0sS) (see Green, " Green, and 
Thaddeus, Parker  et al .  1. l9 For these potentials i t  is 
necessary to consider K 6 ( w )  t e rms  as high as K6. With 
such high order  t e rms  the expression for the S-matrix 
would be somewhat more complicated than Eq. ( 6 . 6 ) .  
On the other hand, the higher order  K,(w) t e r m s  repre- 
sent a type of multiquantum transition whose effect de- 
creases very rapidly with increasing order .  For  exam- 
ple, Ks is proportional to a cos (6wt )  transform of V(r(t)) 
which should be much smaller than the lower order  
t e r m s  such as KO, K,, etc. The pr imary effect of higher 
order  anisotropies in V is thus found in their influence 
on the lower order  t e rms  such as KO and K,. T o  verify 
this  assertion we have performed calculations on C0,- 
A r  and C0,-He using the potentials of Ref. 19. For 
these potentials, V,, V,, and V, are roughly the sameor-  
der  of magnitude while higher t e rms  V,, V, and V,, a r e  each 
an order  of magnitude smaller than their preceeding 
te rms .  We have therefore used 

where p = m / ( j  ++I. Since K ,  made about 0 . 5 %  change in the calculated half-widths, we did not bother to include a 
K, term.  This  result confirms our assertion that the higher order  K ,  t e rms  a re  relatively unimportant and the 
main effect of higher order  anisotropies comes in via the KO, K,, and K, t e rms .  

B. HCI-Ar 

The pressure  broadening of HC1 by argon is an ex- 
tremely valuable tes t  case for  a theory because (1) 
Neilsen and Gordon4 have performed a numerical solu- 
tion of Schrodinger's equation (using classical trajec- 
tor ies  for the translational motion), which should be 
very accurate and thus may be  used to  tes t  other clas- 
sical path apprbaches, (2) there a r e  now some very 
good theoretical potential surfaces for  this system, and 
(3) there are experimental data ranging from low j (the 
1-0 transition) where quantum effects a r e  important to 
high j (the 11-10 transition) which is well into the clas- 
sical region. 

Neilsen and Gordon' have calculated the broadening, 
by argon, of the HC1 pure rotation lines from the 1-0 
transition of the 6-5 transition. They used classical 
paths determined by the isotropic par t  of the potential 
and solved the Schrodhger equation by a numerical 
technique. While this calculation is not as accurate as 
a fully quantum mechanical close coupling approach, it 
is certainly more accurate than our theory for low val- 
ues  of j .  For high values of j ,  our resul ts  should agree 

I 

with Neilsen and Gdrdon's, as they do. This  compari- 
son thus gives an idea of the accuracy of our theory for  
low j ,  as well as providing a tes t  of our  numerical cal- 
culations. 

In our calculation, w e  used the potential labeled S C  
= 52 by Neilsen and Gordon. Our anisotropy parame- 
ters [see Eq. (2 .9)  and (2.10)] are R, = O .  37, R, = 0 . 6 5 ,  
A ,  = O .  33, A,=O. 14, which differ slightly f rom those 
given by Neilsen-Gordon4 (on p. 4153) because they 
used an exponential repulsion rather  than l/#'. Our 
parameters  were obtained by numerically fitting their 
potential. 

Figure 1 compares the unaveraged c r o s s  section 
4 2 4 ,  b )  defined by Eq. (5 .1)  with that obtained by Neilsen- 
Gordon4 for the 5-4 line at 400 K. In Table I, we have 
also listed various c ros s  sections averaged over b and 
ZL which are defined by (again suppressing the vibrational 
quantum number) 

Uj j' ( Z L )  = 2n ba, j' (11,b) db , 
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FIG. 1. U n a v e n g e d  HCI-Ar optical c r o s s  sect ion [see Eq. 
(5.1); for the 5-4 pure rotation line. 
plotted i n  units of the hard sphere  rad ius  d [see Ey. (3.7)). 

The impact  p a r a m e t e r  is 

(6.12) 

. (6.13) 

The excellent agreement between these resul ts  provides 
a useful confirmation of our theoretical approach and 
numerical calculations. 

In Fig. 2, we have compared our calculations (aver- 
aged over velocity) with the experimental data of Pour- 
cin, '' Scott, '' and Gebbie and Stone. 22 The agreement 
between theory and e.xperiment is not important in itself 
since the anisotropy parameters  were chosen by Neil- 
sen and Gordon to give a reasonable fit to experimental 
data. The important point is that in calculations using 
Anderson theory, Giraud e t  n l .  (Ref. 10) were unable 
to f i t  the experimental data without unrealistic assump- 
tions on the impact parameter  cutoff (i. e. ,  the cutoff 
w a s  smaller than the hard sphere collision diameter), 
and they s t ressed the point that close collisions should 
be studied more carefully. From Fig. 1 it is clear that 
if one approximates S(rc, b )  by unity for b l ess  than some 
b,, this value of h, will indeed be much smaller than the 
hard sphere diameter and wil l  provide a very unrealis- 
tic approximation to the 5-matrix. 

In order  to test the assumption of Murphy and Boggs' 
, 

TABLE I. HCI-Ar c r o s s  sect ions for pure  rotat ion t rans i -  
tions ( i .  e. , u = v '  = 0 )  in  A'. The unaveraged c r o s s  sect ions 
g,,J-lp) [Eq.  (6. l o ) ]  n r e  evaluated for  two kinetic energ ies  E 
= 07u-.'Zk (where k is Boltzmnnn's constant). The averaged 
cross sec t ions  [Eq. (6.1111 a r e  evaluated f o r  a tempera ture  
of T = 3 0 0  K. 

Neilsen-Gordon This work 

j E.398 ti E = 7 7 6 K  T = ; L U O K  E - 4 0 4  K E Y08K iP-3U0K 

2 37 .41  5 0 . 2 6  59.16 6 3 . 7  3 7 . 2  69. 7 
3 -15.16 40.00 47.40 4 S . 3  43.1 51 .3  
4 37.28 33.73  3 8 . 4 4  3 3 . 0  3fi. 5 4 0 . 2  
5 30.ti.3 29.31 31 .48  31.0 31.2 32.3 
6 23 .79  25 .% 25 .42  2.5.6 26.9 2 6 . 3  

o,o:> j- 
H C i - A r  

T=300K i 
i i  

0 S C O I I  

X Gebbie 8 Stone 

P 

i 
O2 L 4 6 8 

J 
0 

FIG. 2. Linewidths (IIWHM) for j - j  - 1 pure  rotat ion t rans i -  
tions i n  HC1-Ar (atm - 101 325 Pa). &r theoret ical  r e s u l t s  
(solid l ine)  a r e  compared  with the experimental  da ta  of Pour- 
c in ,  'O Scott", and Gebbie and Stone. " 

that elastic broadening effects are negligible, we have 
evaluated the elastic and inelastic contributions to 
v,,,,(iO [Eq. (6.lO)l separately: 

u,,,, (10 = a::,. (10 + u:: J , ( i O  . (6.14) 

The inelastic par t  is defined by [see Eq. (5.5)] 

- I ( j ' m  j ~ j j ' t i / ) j ~ ] / ( 2 j  + I )  , (6.15) 

so that the inelastic contribution to the half-width [see 
Eq. ( 5 . 4 ) l  is 

These c ros s  sections a r e  listed in Table I1 for HC1-Ar. 
From these data we conclude that, for  HC1 with i t s  
large rotational constant E ,  = 10.4 cm-l, it is not a good 
approximation to ignore elastic effects, especially for  
high j and low energies. 

C. CO-He and HCI-He 

Calculations were performed on CO-He and HC1-He 
using the potential proposed by G ~ r d o n . ' ~  The purpose 
of these calculations w a s  to compare our resul ts  with 
those of the classical theories which a re  generally 
thought to be quite good for large j .  Various calcula- 
tions in which the internal states of the radiating mole- 
cule are treated classically have been made by G ~ r d o n , ' ~  
Gordon and McGinnis, '4 and Fitz and Marcus.25 Since 
our resul ts  disagree strongly with these classical and 
semiclassical calculations, it is fortunate that Green 
and Thaddeus" and Green and MonchicP6 have per-  
formed close coupling calculations for these systems 
using exactly the same potentials. The close coupling 
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TABLE 11. Unaveraged HC1-Ar j - j  - 1 
c r o s s  sect ions [see Eq. (6.14)l f o r  a 
kinetic energy E = mu2/2k  : 404 K. 

j Uyj-,(?L) @:j- l (?l)  u 1.1- * ( u )  

2 51.3 12.4 63.7 
4 30.5 7.5 38.0 
6 19.9 5.7 25.  6 
8 10.3 4.5 14. 8 

10 4.1 3.4 7.5 

technique, which is simply a numerical solution of the 
fully quantum mechanical Schrodinger equation (e. g . ,  
Ref. 27), is the most accurate technique available and 
provides the most reliable theoretical test. 

As seen from Table 111 and Fig. 3, our resul ts  for  
CO-He agree very well (within 10%) with the close cou- 
pling results, but differ by as much as 5 0 9  from the 
classical resul ts .  The HCI-He resul ts  given in Table 
IV and Fig. 4 show a s imilar  trend. In comparing the 
resul ts  for HCI-He, it should be noted that the resul ts  
of Gordon, Fitz, and Marcus and our resul ts  have been 
averaged over velocity at a temperature of 300 K, 
whereas the close-coupling resul ts  of Green and Mon- 
chick were performed for  a single velocity correspond- 
ing to a kinetic energy of 450 K. The comparison is 
nonetheless valid since the velocity averaged cross  
section at 300 K is essentially the same as the unaver- 
aged c ross  section at 450 K due to the increase of 
uJ, ,.(u) as a function of ZL (for example, note the corre-  
sponding data in Table 111 of Greeh and Monchick). 26 

Again, our resul ts  differ by about 10% f rom the close 
coupling calculations and lie a factor of 2 o r  3 below 
the classical theories. The classical resul ts  are clear- 
ly in e r r o r  since they l ie  well above the close coupling 
calculation and the half-width decreases  with increasing 

j (due to a decreased inelastic contribution). 

This situation is rather  surprising, since it is gener- 
ally thought that the classical theory should be good for 
large j ;  furthermore, the classical HC1- Ar calculations 

TABLE 111.. CO-He j - i - 1  c r o s s  sect ions in A‘. Unaveraged 
cross sect ions [Eqs. (6.10) and (6.14)l are evaluated for kinetic 
energy E =  m u 2 / 2 k -  272 K v2 is Boltzmann’s constant) .  T h e  
velocity averaged  cross sec t ions  [Eq. (6.11)l are evaluated for 
a tempera ture  of T=300 K ,  and compar ison  i s  m a d e  with (a) 
Green  and Thaddeus,  ” (b) F i t z  and Marcus, 2 5  (c)  Gordon, 23 

and (d) Gordon And h lcc innis ,  24 

Unaveraged, E = 272 K 
This  w o r k  Averaged. T = 300 K 

j Inelastic Elastic Total  This  w o r k  Others 

32 

30 

28 

~1 26 
“5 
b 

24 

22 

20 

0 G a d o n  

C O - H e  
T.300 K 

Ftlz 8 
Marcus 

-This Work 

ireen 8 Thaddeus 

12 3 6 9 
J 

FIG. 3. Velocity averaged  c r o s s  sec t ions  [Eq. (6.11)l for 
j - j  - 1 t ransi t ions in  Co-He a t  a tempera ture  of 300 K. 
calculat ions are compared  with those of G r e e n  and Thaddeus,  ” 
Gordon, 23 and Fi tz  and Marcus.  25 T h e  da ta  of Gordon and 
McGinnis” w e r e  not plotted s i n c e  they a r e  wel l  off scale (see 
Table III). 

0.w 

of Fitz and Marcus agree quite well with our semiclassi- 
cal resul ts  and those of Neilsen and Gordon. The ex- 
planation is perhaps found in the fact that both CO-He 
and HC1-He are completely dominated by inelastic 
broadening (see Tables 111 and JY) owing to their weak 
long range interaction (small well depth) and small  re- 
duced mass  (resulting in higher velocities at a given 
temperature). The simple classical expression for  the 
inelastic transition probability seems to  be a weak point 
in the classical theory of Gordonz3 and even in the more 
recent theory of Fitz and Marcus2‘; it is necessary to 
replace the “primitive semiclassical” approximation by 
an “unformlike” approximation when the former breaks 
down (see Fitz and Marcus,25 p. 3790). 

TABLE IV. HC1-He j - i - 1 cross sec t ions  in  d2. Unaveraged 
c r o s s  sec t ions  [Eqs. (6.10) and (6.14)j a r e  evaluated for kinetic 
e n e r g i e s  E = m u 2 / 2 k  (k is Boltzmann’s  constant) of 480 K and 
450 K. Averaged cross sect ions,  Eq. (6.11). are evaluated 
for a tempera ture  of T=300 K. Data a r e  obtained from th is  
work  and (a) Green  and Monchick,26 (b) Fi tz  and Marcus ,25  and 
(c)  Gordon. 23 ’ 

1 25.3 0.72 26.0 26 .0  
2 22.6 0.43 23.0 23.1 
3 21.8 0.27 22.1 2 2 . 3  
4 21.7 0.18 21.9 22.0 
5 21.7 0.12 21.8 21.9 
6 21.6 0 .09  21 .7  21.7 
7 21.4 0.07 21.5 21.6 
8 21.3 0.05 21.4 21.5 
9 21.2 0.04 21.2 21.3 

11 2 0 . 8  0.03 20.8 20.9 
12 20.6 0 .03  *20.6  20.7 

1 0  21.0 0.04 21.0 21. 

23.5(a) 36(d) 
21.9(a) 34.6(d) 

35.3(d) 
36. 8(d) 
37 .1  (d) 
36.7(d) 
36.7(d) 
36.O(d) 
35.8(d) 
35.8(d) 

35.6(d) 
26 (b). 31 (c), 36 .0  (d) 

i - 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Unavenged 
E -  450 K 

This work,  unaveraged 
K 

Inelastic 

6.72 
5.62 
6.01 
6.25 
6.04 
5.57 
5.00 
4.43 
3.88 
3.40 

Elastic 

0.136 
0.057 
0.034 
0.020 
0.014 
0.011 
0.008 
0.007 
0.005 
0.004 

Total Total 

6. 86 8 . 2 I d  

6.04 9.0(a)  
6.27 7 . 9 ( a )  
6.05 

5.01 
4.44 
3.69 
3.40 

5.68 8 . 0 ~  

5.58 

Averaged 
T=300 K 

This w o r k  Others 

7.46 14 (b), 1 7 k )  
6 .28  1 3 b )  
6.49 
6. 53 
6.31 12(b), 14(c) 
5.91 1 1 . 5 b )  
5.43 
4.93 
4.43 
3.95 8b). 1 0 k )  
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FIG. 4. Cross sect ions for j - j  - 1 transi t ions in HC1-He. 
All  calculat ions except those of Green and MonchickZ6 are 
velocity averaged [Eq. (6.11)] a t  a t empera tu re  of 300 K. The 
unaveraged r e s u l t s  of Green and &Ionchick a t  a kinetic energy 
mu2, 2k = 450 K (k i s  Boltzmann's constant) are expected to be 
roughly the s a m e  as the velocity averaged resu l t s  (see dis- 
cussion in Sec. VI. c) ,  

D. C02-Ar and C0,-He 

The HC1-Ar, CO-He, and HC1-He calculations were 
used to provide a test of our theory by comparing it with 
other theoretical methods. The potentials used in those 
calculations were model potentials which were, in most 
cases ,  designed to provide agreement with experimen- 
tal data. 
somewhat misleading, especially since recent theoreti- 
ca l  work has  shown that higher order anisotropies must 
be included in the interaction potentials. 

Comparisons with experiment would thus be 

The purpose of the C0,-Ar and C0,-He calculations 
is to use some of the new theoretical potential sur faces  
based on the Gordon-Kim electron-gas model" and 
thus obtain a more realistic comparison with experimen- 
tal data over a wide range of j values. We also wanted 
to see  if the higher order  K, t e rms  would be negligible 
(as discussed in Sec. VI. A )  and CO, provides a very 
stringent tes t  of this approximation owing to its small  
rotational constant. 

In our calculations we used the potentials obtained by 
Parker  et aZ.(Ref. 19) fitting their V,(Y) functions to 
6-12 functions of the form shown in Eq. (2.11). For 
C0,-Ar, our parameters  were  < =97.95 K, d=3.86  A, 
R,=2.24, A,=0.549, R,=1.09, A,=0.167, R,=0.27, 
&=0.034, R8=0.059, A,=0.011. Figure 5 shows the 
comparison of our calculations with the experimental 
resul ts  of Boulet et al. (Ref. 28) for  j values ranging 
f rom 3 to 40. The dashed and dotted curves represent 
the effect of V, only and V, + V,  t e rms .  The solid curve 
represents the combined effect of V,, V,, V,, and V,. 
The addition of V, ra ised the curve l e s s  than 2% so  the 
V,, V4, V, curve was not plotted. Ignoring the K4 t e rm 
[i. e., the cos(4wt) transform in Eqs. (4.16) and (6.911 
had l e s s  than 1% effect. Thus, the effect of higher or-  
der  anisotropies in the potential is important up to the 

V, term,  but the effect of these anisotropies enters  only 
through the KO and K ,  t e r m s  in Eqs. (4.6), (6.7), and 
(6.8). 

The agreement between theory and elrperiment is 
quite good, considering that there  a r e  no adjustable pa- 
rameters  in either the line shape theory o r  the ab initio 
potential. Nonetheless. i t  is clear  that the theoretical 
resul ts  lie about 1 2 7  too low. This is probably due to 
vibrational effects which will enter via the te rm 
discussed in Sec. 11. Since these radiative transitions 
in CO, take place between two different vibrational 
modes, one would expect the vibrational effects to be 
relatively important, and they should be evaluated be- 
fore  drawing any final conclusions regarding the theo- 
retical-experimental comparison. 

As a further check on the vibrational broadening ef- 
fect, we performed C0,-He calculations. The contribu- 
tion of vibrational broadening is much smaller for  He 
per turbers  than for A r  perturbers (see Refs. 10 and 29) 
because the smaller He polarizability makes long range 
forces  l e s s  important; consequently, the C0,-He broad- 
ening is dominated by short range forces  which seem to 
be l e s s  affected by molecular vibration (for example, 
Tipping and Herman, 29 p. 893, e t  s eq .  ). It was more 
difficult to f i t  the C0,-He potentials of Parker  e t  (IZ. l9 

to the 6-12 functions which we used in our  computer 
program, and this difficulty introduced a i 2% uncer- 
tainty into our calculations. The parameters  used were 
(<=20.25K,  d = 3 . 7 2 A ,  R,=2.85, A,=0.71, R,=1.44, 
A 4 ~ 0 . 0 7 ,  K,=0.52, A6=0.10, Raz0.13, andA,=0.048. 

Our  results, given in Fig. 6, agree quite well with 
the experimental data of Meyer e t  a l . ,  30 Judd, 31 and 
Abrams3' for the 10 p m  band and lie about 15% below 
the P(20) measurement of Meyer et  n l .  30 for  the 9 pm 

0 0 9 ,  I 
I T  C%-Ar 3 0 0 K  1 

-... 
0 0 4 '  IO 15 20 25 30 35 40 

J 
FIG. 5. Linewidths (IiWHiVI) for j - j  - 1 transi t ions in 
C0,-Ar showing the contributions of higher o r d e r  anisotropy t e r m s  
i n  the potential. 
on the linewidth ( see  discussion in Secs. VI. A and VI. D). 
Theoret ical  calculat ions (solid curve)  compare  favorably with 
the experimental  resu l t s  of Boulet et a l .  * *  The measu remen t  
of Meyer  et al.  , w =  0.063, for the P(20)  line was not plotted 
although it  a g r e e s  with the data  of Boulet et al. 

T e r m s  higher  than u8 have a negligible effect 
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FIG. 6 .  Linewidths (HWHbI) f o r  j - j  - 1 transi t ions in 
C 4 - H e  showing thecontributions of higher o r d e r  misotropy t e r m s  
i n  the potential. 
on the linewidth (see discussion in Secs. VI. A and VI. D). 
Theoret ical  calculat ions (solid curve)  compare  favorably with 
the measu remen t s  of h leyer  et n l .  ,30 . 4 b r a m ~ , ~ *  and with ex- 
per imental  data analyzed by Judd. 3' 

Terms higher  than v, have a negligible effect 

band. Since Meyer e t  al .  point out (on p. 2002) that 
their 9 p m  data seem a bit high, this agreement could 
be interpreted as closer than that for C0,-Ar, thereby 
supporting our assertion that the disparity in the C0,- 
Ar case is due to vibrational broadening. A s  in the 
C0,-Ar case, the addition of the V, anisotropy raised 
the calculations by about 2% and the addition of the K ,  
t e rm had less than 1% effect. 

VII. CONCLUSIONS 

We have formulated a new type of exponential approx- 
imation for  the S-matrix which is designed to be valid 
for  large j values. Our main approximation, introduced 
in Eqs. (4.1) and (4 .2) ,  was the assumption that the 
change in j in a single V matrix element is small com- 
pared with j itself. In the Appendix, it is shown that 
the e r ro r  introduced by this approximation is a t  most 
the order  of (Aj / j )2 .  In our calculations, we have found 
that the e r r o r  is usually considerably l e s s  than this. 

' 

For example, in the' case  of CO-He, the interaction 
contained t e rms  up to P,(cose), so that our e r r o r  could 
be as large a3 (2/j)'. However, for  the 1-0 and 2-1 
transitions our resul ts  lie within 10% of the close cou- 
pling results. 

Another approximation whose validity i s  difficult to 
assess  is the use of classical t ra jector ies  determined 
only by the isotropic part, V,, of the potential. If we 
were looking directly at the angular distribution of the 
scattered particles, as in a beam experiment, this ap- 
proximation would not be adequate. However, for the 
processes  in a gas where one is looking at spherically 
averaged phenomena, i t  should be much better. The 
agreement of our resul ts  with close-coupling calcula- 
tions would tend to support such a conclusion, but this  
certainly does not constitute a proof. The validity of 

this approximation should be investigated further. 

The main virtue of our approach is that it enables one 
to use curved classical t ra jector ies  which a r e  f a r  more 
realistic than the straight path trajectories of the Ander- 
son type theories. It also t reats  the classical path 5- 
matrix to all orders ,  thereby avoiding the problems at- 
tendant with impact parameter  cutoffs, e t c . ,  which tend 
to obscure the physical analysis in perturbative ap- 
proaches such as the Anderson theory. 

Apart from close-coupling methods, which a r e  e-xpen- 
sive and, for practical purpose. limited to very low 
quantum numbers, the only other theories which use 
realistic trajectories and t reat  the S-matrix to all or-  
ders  a r e  those classical and semiclassical theories in 
which the radiating molecule is treated as a classical 
radiator, usually by means of action angle  variable^?^-^^ 
Since one expects this  approach to be valid in the limit 
of high quantum numbers, we were quite surprised to 
find that our resul ts  for CO-He and HC1-He differ by 
as much as 100% f rom these classical and semiclassical 
calculations. We obtained good agreement with semi- 
classical theories for HC1-Ar but in that case the line- 
widths a r e  strongly affected by elastic broadening. The 
use of continuous rather  than discrete variables in the 
classical theories makes it ra ther  difficult to obtain ex- 
pressions for  inelastic transition probabilities and, as 
discussed in Sec. N, we suspect that this might be the 
source of the disagreement for  CO-He and HC1-He. In 
defense of the classical theories, i t  should be noted that 
they use classical t ra jector ies  which are determined by 
the full interaction potential and are thus more accurate 
than ours .  We had therefore suspected that our resul ts  
were in e r ro r  rather than those of the classical  theo- 
ries; however, the fact that the classical calculations at 
high j lie above the close-coupling calculations at low J 

clearly indicates that i t  is in fact the classical calcula- 
tions which are in e r r o r  (linewidths decrease as a func- 
tion of j owing to a decrease in the inelastic collision 
c ross  section). 

In the theory of Murphy and Boggs, it is suggested 
that the linewidths may be regarded as a sum of inelas- 
tic c ros s  sections. That is, the elastic t e rm in our 
equation (5.4) would be ignored. This  would be a very 
useful approximation, if correct ,  because one could ob- 
tain a set  of inelastic ra tes  simply by measuring a set 
of linewidths. This procedure is sometimes used in 
laser  modeling where linewidth measurements a r e  often 
much easier than direct measurements of inelastic pro- 
cesses. 3 3  We tested this idea by calculating the elastic 
and inelastic linewidth contributions separately. 
pure rotation lines, we  found very little elastic broad- 
ening except in the case of HC1-Ar, where the elastic 
contribution began to approach 50% for the large j val- 
ues. For all other pure rotation lines, the Murphy- 
Boggs approximation would have been quite accurate. 
For vibration-rotation lines, one has  to  be  very care- 
ful in applying their approximation because there  can be  
a large elastic contribution from vibrational broadening 
as there  seems to be in the case  of C0,-Ar, for  ex- 
ample. 

We calculated several  linewidths for  C0,-Ar and 

For 
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C0,-He using the 05 itzilio potentials of Parker  et 
A h  initio poteniial surfaces such as these typically con- 
tain strong contributions from rather  high order anisot- 
ropies such as P,(cosP) and $,(cos@), whereas most 
semiemperical potentials contain only P,(cosO) and 
P,(cosB) te rms .  In these calculations we found that the 
higher order anisotropies influenced the linewidth only 
through their i l j  = O  and A j  = 2 matrix elements. Thus, 
as far as linewidths a r e  concerned, one could have ap- 
proximated the effect of the higher order anisotropies 
by simply changing the P,(cosQ) coefficients. This 
probably explains why the simple semiempirical poten- 
tials a re  able to give such good agreement with experi- 
mental resul ts  even though they strongly disagree with 
ab initio calculations. 
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APPENDIX A 

In order to discuss the approximations to wjJ. and 
( j r n  I Y i  l j 'm)  introduced in Sec. IV, we will consider 

the second order te rm in the correct  classical path S - 
matrix [given by Eqs. (2 .5)  and (3.311 where these ap- 
proximations have not been made. The peaking approx- 
imation is already built into Eq. (3.3), but that approx- 
imation has  been shown to be very good by Roberts" 
in cases  s imilar  to those encountered here .  In line 
broadening, we a r e  interested only in diagonal S-matrix 
elements. thus the second order te rm is 

To second order ,  we can ignore the effect of time 
ordering because the correction t e r m  is imaginary and 
thus contributes to the line width only when squared 
(i. e . ,  in fourth order) .  Furthermore, since our ap- 
proximations are exact for  j '= j  (see Sec. N), we will 
only consider those t e rms  for which j ' #  j .  

We first determine the effect of our approximation 
on w,,. . If V ( d t ) )  vanishes in a time T much less than 
1 / w l J , ,  any e r r o r s  due to our  approximate wJI, may be  
ignored. The worst  possible case  (i. e., the most sen- 
sitive to ' J ) ,~ . )  is thus when w , , , T > > ~ .  T o  estimate that 
case  let V(r ( t ) )  = 7 for  - 7 5  ts  T and zero  fo r  It I > T .  

We then obtain for the unordered second order  integral 

(A2 

In the last two lines of Eq. ( A Z ) ,  the exact wjj, has been 
used and the result has been expanded to order  (Aj/j)'. 

T h e j r  sum in Eq. ( A l )  runs f r o m j - 1  t o j + 1 ;  thus, 
Aj will run f rom - 1 to + l .  Consequently, when Eq. (A2) 
is substituted into Eq. (Al) ,  the odd t e rms  in 2.j will 
vanish. This  means that, to order (Aj/ j I2 ,  we may re- 
place the bracket in Eq. (A2) by unity. This  is equiva- 
lent to approximating wjj .  by 2ac.E(2j + l ) A j  [compare the 
first and third lines of Eq. ( A 2 ) ] ;  thus, our w j j .  approx- 
imation is correct  to order  (Aj i j ) , .  Using this  approxi- 
mation, Eq. ( A l )  becomes 

4n72 
'2 = - g, u2 Aj2 \I-(" 

x ( j r ) / ~ y ~ i j ' , , / ) ( j ' ~ ~ / l ~ ~ ' / j r r i j  , (A31 

where w = 2i;cLi(2j + 1) as in Eq. ( 4 . 2 ) .  The  classical ex- 
pression for the 3j symbol used in Eq. (4.1) (see Ed- 
mends', o r  Brussard and T01hoek~~)  is correct  to within 
t e rms  of order ( A j i j ) ;  thus, using Eqs. (4.1) and (A3),  
we have 

(A41 
where A is a t e r m  of order  unity o r  smaller depending 
on I, l', j, and ) ) I  and again we have dropped t e rms  pro- 
portioflal to  ( A j i j )  since they cancel out in the sum 
over j . 

sion of our approximate - S-matrix, Eq. (4.16) [again 
assuming V ( v ( f ) )  = v for  - 75 t~ T and zero  for  ~f I > T I ,  
which is 

We next consider the second order t e rm in an expan- 
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where we have used the fact that the te rm being summed 
is invariant under 6 - - 6 to replace 25 6,,, by 
sum over both positive and negative 6 (the limits on this 
summation a r e  discussed below). We have also omitted 
the 6 = O  t e rms  since they a r e  identical to the j =j' te rms  
excluded above, and we again used Eq. (A2) to approxi- 
mate the interaction integrals to order  (6/j)'. 

Since our approximate result, Eq. (A5), is identical 
to the result obtained from an expansion of an exact S- 
matrix, Eq. ( A 4 ) ,  our approximation would seem to be 
accurate to within t e rms  of order  ( A j / j ) 2 .  There is, 
however, one slight complication which must be con- 
sidered before one can draw this conclusion. The 
"exact" result, Eq. ( A 4 ) ,  contains a sum over interme- 
diate s ta tes  j '  which are restricted by the correct  3j 
symbols, whereas in our  exponential approximation, 
the sum over 6 simply runs from - I to + I  (or f rom - I' 
to + I '  if I' < I ) .  For example, consider fixed values of 
m ,  I, and 1' such that 1 < 1 ' .  The sum over j' normally 
ranges from; - I to j + I ;  however, we must also have 
j ' z  m [see Eq. (A3)], and for  large values of nz it may 
happen that nz > j  - I .  In that case, j '  ranges from t ~ z  to 
j + I  and 6 in Eq. (A5) should run from - I to j - ? ? I .  Un- 
fortunately, there  is no such restriction on 6 .in our ap- 
proximate S-matrix (this is a general problem with all 
exponential approximations to S matrices); thus, we a r e  
adding in some t e r m s  which should not be counted. 
Fortunately, the t e rms  which are counted incorrectly 
add only an amount of order  
To show this we note f i r s t  that the problem occurs  only 
when m is large (i. e., within Aj of n i  = j ) ;  thus, in the 
sum over nz [Eq. (5. l)] w e  a r e  making an e r r o r  in at 
most Aj of the (2j  +1) terms.  If all te rms  in the sum 
over m were weighted equally, this e r r o r  would be at 
most ( i l j / j )  compared with unity, However, these 
t e rms  are not weighted equally. For  dipole transitions 
they are weighted by [cf. Eq. (5.1), noting t h a t j ' = j  *1 
for  dipole transitions] the factor 

a 

compared with unity. 

j;? ;y (A6) 

which vanishes for large m .  When tti  is within IAj  I of 
j ,  Eq. (A6) is ( A j / j )  smaller  than its value a t  m = O ;  our 
e r r o r  is thus reduced to the order  of (Aj/j)2 compared 
with unity, Furthermore, the Legendre polynomials in 
Eq. (A4) vanish as.1- m 2 / ( j  +*)2 o r  faster as m - j .  
Thus, the t e rms  which are incorrectly included in the 
summation produce an e r r o r  the order  of ( A J / j ) * ,  

We may thus conclude that the e r r o r  introduced by 
using the 3j symbol approximation of Eq. (4.11, and the 
approximate frequency w l j ,  5 wil j  of Eq. ( 4 . 2 )  is a t  most 
the order  of (Aj/ j ) '  in the second order  te rm.  Since 
higher order  t e rms  a r e  if anything smaller ,  their e r r o r  
should be relatively less important. 
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